The important task of library book inventory, or shelf-reading, requires humans to remove each book from a library shelf, open the front cover, scan a barcode, and reshelve the book. It is a labor-intensive and often error-prone process. Technologies such as 2D barcode scanning or radio frequency identification (RFID) tags have recently been proposed to improve this process. They both incur significant upfront costs and require a large investment of time to fit books with special tags before the system can be productive. A vision-based automation system is proposed to improve this process without those prohibitively high upfront costs. This low-cost shelf-reading system uses a hand-held imaging device such as a smartphone to capture book spine images and a server that processes feature descriptors in these images for book identification. Existing color feature descriptors for feature matching typically use grayscale feature detectors, which omit important color edges. Also, photometric-invariant color feature descriptors require unnecessary computations to provide color descriptor information. This paper presents the development of a simple color enhancement feature descriptor called Color Difference-of-Gaussians SIFT (CDSIFT). CDSIFT is well suited for library inventory process automation, and this paper introduces such a system for this unique application.
Loading....